An omission approach for detecting outliers in fuzzy regression models

نویسندگان

  • Wen-Liang Hung
  • Miin-Shen Yang
چکیده

Since Tanaka et al. in 1982 proposed a study in linear regression with a fuzzy model, fuzzy regression analysis has been widely studied and applied in various areas. However, Tanaka’s approach may give an incorrect interpretation of the fuzzy linear regression results when outliers are present in the data set. To handle the outlier problem, we propose an omission approach for Tanaka’s linear programming method. This approach has the capability to examine the behavior of value changes in the objective function of fuzzy regression models when observations are omitted. Furthermore, we use a simple visual display—box plot—to define the cutoffs for outliers. Some numerical experiments are performed to assess the performance of the proposed approach. Numerical results clearly indicate our approach performed well. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A robust least squares fuzzy regression model based on kernel function

In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...

متن کامل

Simultaneous robust estimation of multi-response surfaces in the presence of outliers

A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...

متن کامل

Fuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets

‎Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set‎. ‎If we have fuzzy observations‎, ‎using ordinal regression methods can't model them; In this case‎, ‎using fuzzy regression is a good method‎. ‎When observations are fuzzy and there are outliers in the data sets‎, ‎using robust fuzzy regression methods are appropriate alternatives‎....

متن کامل

Depth Improvement for FTV Systems Based on the Gradual Omission of Outliers

Virtual view synthesis is an essential part of computer vision and 3D applications. A high-quality depth map is the main problem with virtual view synthesis. Because as compared to the color image the resolution of the corresponding depth image is low. In this paper, an efficient and confided method based on the gradual omission of outliers is proposed to compute reliable depth values. In the p...

متن کامل

An Approach of Artificial Neural Networks Modeling Based on Fuzzy Regression for Forecasting Purposes

In this paper, a new approach of modeling for Artificial Neural Networks (ANNs) models based on the concepts of fuzzy regression is proposed. For this purpose, we reformulated ANN model as a fuzzy nonlinear regression model while it has advantages of both fuzzy regression and ANN models. Hence, it can be applied to uncertain, ambiguous, or complex environments due to its flexibility for forecas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 157  شماره 

صفحات  -

تاریخ انتشار 2006